Charge-transport properties of 4-(1,2,2-triphenylvinyl)aniline salicylaldehyde hydrazone: tight-packing induced molecular ‘hardening’
نویسندگان
چکیده
Based on first-principles calculations, the relationship between molecular packing and charge-transport parameters has been investigated and analysed in detail. It is found that the crystal packing forces in the flexible organic molecule 4-(1,2,2-triphenylvinyl)-aniline salicylaldehyde hydrazone (A) can apparently overcome the dynamic intramolecular rotations and the intramolecular steric repulsion, effectively enhancing the molecular rigidity and decreasing the internal reorganization energy. The conducting properties of A have also been simulated within the framework of hopping models, and the calculation results show that the intrinsic electron mobility in A is much higher than the corresponding intrinsic hole mobility. These theoretical investigations provide guidance for the efficient and targeted control of the molecular packing and charge-transport properties of organic small-molecule semiconductors and conjugated polymeric materials.
منابع مشابه
Halogen Substituent Effect on the Spin-Transition Temperature in Spin-Crossover Fe(III) Compounds Bearing Salicylaldehyde 2-Pyridyl Hydrazone-Type Ligands and Dicarboxylic Acids
Four Fe(III) spin-crossover (SCO) compounds, [Fe(HL1)2](HCl4TPA) (1-Cl), [Fe(HL1)2](HBr4TPA) (1-Br), [Fe(HL2)2](HCl4TPA) (2-Cl), and [Fe(HL2)2](HBr4TPA) (2-Br) (HL1 = 4-chloro-2-nitro-6-(1-(2-(pyridine-2-yl)hydrazono)ethyl)phenolate; HL2 = 4-bromo-2-nitro-6-(1-(2(pyridine-2-yl)hydrazono)ethyl)phenolate; HCl4TPA = 2,3,5,6-tetrachloro-4-carboxybenzoate; and HBr4TPA = 2,3,5,6-tetrabromo-4-carboxyb...
متن کاملAnalgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their zinc(II) complexes.
Salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their complexes [Zn(LASSBio-466)H(2)O](2) (1) and [Zn(HLASSBio-1064)Cl](2) (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordin...
متن کامل2-Bromo-4-chloro-6-(4-fluorophenyliminomethyl)phenol
The two mol-ecules of the title compound, C(13)H(8)BrClFNO, in the asymmetric unit are inter-connected by π-π inter-actions between the salicylaldehyde and aniline units, the shortest inter-planar distance being 3.317 (3) Å. These pairs and their translation equivalents are further linked by C-H⋯F hydrogen bonds, forming a one-dimensional infinite chain. In addition, there is an intra-molecular...
متن کاملStructure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved ...
متن کاملUse of side-chain for rational design of n-type diketopyrrolopyrrole-based conjugated polymers: what did we find out?
The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on th...
متن کامل